#!/usr/bin/perl
# Representation of quadratic polynomials in terms of their zeros.
# Let:
# P(x) = a*x^2 + b*x + c
# Let (m, n) be the solutions to P(x) = 0
# Then:
# P(x) = c * (1 - x/m) * (1 - x/n)
use 5.014;
use strict;
use warnings;
use Math::Bacovia qw(:all);
use Math::AnyNum qw(isqrt);
sub integer_quadratic_formula {
my ($x, $y, $z) = @_;
(
Fraction((-$y + isqrt($y**2 - 4 * $x * $z)), (2 * $x)),
Fraction((-$y - isqrt($y**2 - 4 * $x * $z)), (2 * $x)),
);
}
my @poly = (
[ 3, -15, -42],
[ 20, -97, -2119],
[-43, 29, 14972],
);
my $x = Symbol('x');
foreach my $t (@poly) {
my ($x1, $x2) = integer_quadratic_formula(@$t);
my $expr = $t->[0] * $x**2 + $t->[1] * $x + $t->[2];
my $f1 = (1 - $x / $x1);
my $f2 = (1 - $x / $x2);
printf("%s = %s * %s * %s\n",
$expr->pretty,
$f1->simple->pretty,
$f2->simple->pretty,
$t->[2],
);
}
__END__
((3 * x^2) + (-15 * x) + -42) = (1 - (x/7)) * (1 - (x/-2)) * -42
((20 * x^2) + (-97 * x) + -2119) = (1 - (x/13)) * (1 - (x/(-326/40))) * -2119
((-43 * x^2) + (29 * x) + 14972) = (1 - (x/(-788/43))) * (1 - (x/19)) * 14972