package Bencher::Scenario::StringFunctions::CommonPrefix;

our $DATE = '2021-07-31'; # DATE
our $VERSION = '0.005'; # VERSION

use strict;
use warnings;

our $scenario = {
    summary => "Benchmark calculating common prefix",
    participants => [
        {fcall_template=>'String::CommonPrefix::common_prefix(@{<strings>})'},
    ],
    datasets => [
        {name=>'elems0'          , args=>{strings=>[]}},
        {name=>'elems1'          , args=>{strings=>['x']}},
        {name=>'elems10prefix0'  , args=>{strings=>[map{sprintf "%02d", $_} 1..10]}},
        {name=>'elems10prefix1'  , args=>{strings=>[map{sprintf "%02d", $_} 0..9]}},
        {name=>'elems100prefix0' , args=>{strings=>[map{sprintf "%03d", $_} 1..100]}},
        {name=>'elems100prefix1' , args=>{strings=>[map{sprintf "%03d", $_} 0..99]}},
        {name=>'elems1000prefix0', args=>{strings=>[map{sprintf "%04d", $_} 1..1000]}},
        {name=>'elems1000prefix1', args=>{strings=>[map{sprintf "%04d", $_} 0..999]}},
    ],
};

1;
# ABSTRACT: Benchmark calculating common prefix

__END__

=pod

=encoding UTF-8

=head1 NAME

Bencher::Scenario::StringFunctions::CommonPrefix - Benchmark calculating common prefix

=head1 VERSION

This document describes version 0.005 of Bencher::Scenario::StringFunctions::CommonPrefix (from Perl distribution Bencher-Scenarios-StringFunctions), released on 2021-07-31.

=head1 SYNOPSIS

To run benchmark with default option:

 % bencher -m StringFunctions::CommonPrefix

To run module startup overhead benchmark:

 % bencher --module-startup -m StringFunctions::CommonPrefix

For more options (dump scenario, list/include/exclude/add participants, list/include/exclude/add datasets, etc), see L<bencher> or run C<bencher --help>.

=head1 DESCRIPTION

Packaging a benchmark script as a Bencher scenario makes it convenient to include/exclude/add participants/datasets (either via CLI or Perl code), send the result to a central repository, among others . See L<Bencher> and L<bencher> (CLI) for more details.

=head1 BENCHMARKED MODULES

Version numbers shown below are the versions used when running the sample benchmark.

L<String::CommonPrefix> 0.01

=head1 BENCHMARK PARTICIPANTS

=over

=item * String::CommonPrefix::common_prefix (perl_code)

Function call template:

 String::CommonPrefix::common_prefix(@{<strings>})



=back

=head1 BENCHMARK DATASETS

=over

=item * elems0

=item * elems1

=item * elems10prefix0

=item * elems10prefix1

=item * elems100prefix0

=item * elems100prefix1

=item * elems1000prefix0

=item * elems1000prefix1

=back

=head1 BENCHMARK SAMPLE RESULTS

Run on: perl: I<< v5.34.0 >>, CPU: I<< Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz (4 cores) >>, OS: I<< GNU/Linux LinuxMint version 19 >>, OS kernel: I<< Linux version 5.3.0-68-generic >>.

Benchmark command (default options):

 % bencher -m StringFunctions::CommonPrefix

Result formatted as table (split, part 1 of 8):

 #table1#
 {dataset=>"elems0"}
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset | ds_tags | p_tags | perl | rate (/s) | time (ns) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems0  |         |        | perl |   8690000 |       115 |                 0.00% |                 0.00% | 5.4e-11 |      21 |
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

          Rate     
     8690000/s  -- 
 
 Legends:
   : dataset=elems0 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 2 of 8):

 #table2#
 {dataset=>"elems1"}
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset | ds_tags | p_tags | perl | rate (/s) | time (ns) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems1  |         |        | perl |   2470000 |       405 |                 0.00% |                 0.00% | 1.9e-10 |      24 |
 +-------------------------------------+---------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

          Rate     
     2470000/s  -- 
 
 Legends:
   : dataset=elems1 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 3 of 8):

 #table3#
 {dataset=>"elems1000prefix0"}
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset          | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems1000prefix0 |         |        | perl |      5580 |       179 |                 0.00% |                 0.00% | 5.3e-08 |      20 |
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

       Rate     
     5580/s  -- 
 
 Legends:
   : dataset=elems1000prefix0 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 4 of 8):

 #table4#
 {dataset=>"elems1000prefix1"}
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset          | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems1000prefix1 |         |        | perl |      4800 |       210 |                 0.00% |                 0.00% | 2.1e-07 |      20 |
 +-------------------------------------+------------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

       Rate     
     4800/s  -- 
 
 Legends:
   : dataset=elems1000prefix1 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 5 of 8):

 #table5#
 {dataset=>"elems100prefix0"}
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset         | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems100prefix0 |         |        | perl |     55000 |        18 |                 0.00% |                 0.00% | 2.6e-08 |      21 |
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

        Rate     
     55000/s  -- 
 
 Legends:
   : dataset=elems100prefix0 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 6 of 8):

 #table6#
 {dataset=>"elems100prefix1"}
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset         | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems100prefix1 |         |        | perl |     47200 |      21.2 |                 0.00% |                 0.00% | 5.7e-09 |      27 |
 +-------------------------------------+-----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

        Rate     
     47200/s  -- 
 
 Legends:
   : dataset=elems100prefix1 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 7 of 8):

 #table7#
 {dataset=>"elems10prefix0"}
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset        | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems10prefix0 |         |        | perl |    460000 |       2.2 |                 0.00% |                 0.00% | 2.5e-09 |      20 |
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

         Rate     
     460000/s  -- 
 
 Legends:
   : dataset=elems10prefix0 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Result formatted as table (split, part 8 of 8):

 #table8#
 {dataset=>"elems10prefix1"}
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | participant                         | dataset        | ds_tags | p_tags | perl | rate (/s) | time (μs) | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix::common_prefix | elems10prefix1 |         |        | perl |    396000 |      2.53 |                 0.00% |                 0.00% | 7.3e-10 |      26 |
 +-------------------------------------+----------------+---------+--------+------+-----------+-----------+-----------------------+-----------------------+---------+---------+

The above result formatted in L<Benchmark.pm|Benchmark> style:

         Rate     
     396000/s  -- 
 
 Legends:
   : dataset=elems10prefix1 ds_tags= p_tags= participant=String::CommonPrefix::common_prefix perl=perl

The above result presented as chart:

=begin html

<img src="" />

=end html


Benchmark module startup overhead (C<< bencher -m StringFunctions::CommonPrefix --module-startup >>):

Result formatted as table:

 #table9#
 +----------------------+-----------+-------------------+-----------------------+-----------------------+---------+---------+
 | participant          | time (ms) | mod_overhead_time | pct_faster_vs_slowest | pct_slower_vs_fastest |  errors | samples |
 +----------------------+-----------+-------------------+-----------------------+-----------------------+---------+---------+
 | String::CommonPrefix |         8 |                 4 |                 0.00% |                92.35% | 0.00022 |      20 |
 | perl -e1 (baseline)  |         4 |                 0 |                92.35% |                 0.00% | 0.00013 |      20 |
 +----------------------+-----------+-------------------+-----------------------+-----------------------+---------+---------+


The above result formatted in L<Benchmark.pm|Benchmark> style:

                Rate   S:C  :perl -e1 ( 
  S:C          0.1/s    --         -50% 
  :perl -e1 (  0.2/s  100%           -- 
 
 Legends:
   :perl -e1 (: mod_overhead_time=0 participant=perl -e1 (baseline)
   S:C: mod_overhead_time=4 participant=String::CommonPrefix

The above result presented as chart:

=begin html

<img src="" />

=end html


To display as an interactive HTML table on a browser, you can add option C<--format html+datatables>.

=head1 HOMEPAGE

Please visit the project's homepage at L<https://metacpan.org/release/Bencher-Scenarios-StringFunctions>.

=head1 SOURCE

Source repository is at L<https://github.com/perlancar/perl-Bencher-Scenarios-StringFunctions>.

=head1 BUGS

Please report any bugs or feature requests on the bugtracker website L<https://rt.cpan.org/Public/Dist/Display.html?Name=Bencher-Scenarios-StringFunctions>

When submitting a bug or request, please include a test-file or a
patch to an existing test-file that illustrates the bug or desired
feature.

=head1 AUTHOR

perlancar <perlancar@cpan.org>

=head1 COPYRIGHT AND LICENSE

This software is copyright (c) 2021, 2018 by perlancar@cpan.org.

This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.

=cut