The Perl Advent Calendar needs more articles for 2022. Submit your idea today!
``````=head1 Name

SPVM::Document::Tutorial::Complex - complex tutorial.

This document is complex tutorial.

=begin html

<h2>Complex Tutorial</h2>

SPVM provides common arithmetic for complex numbers at the same level as C99.

<h3>Complex Type</h3>

Complex Type is Complex_2f for complex float and Complex_2d for complex double.

Complex_2f and Complex_2d is <a href="/language.html#language-type-multi-numeric">Multi Numeric Type</a>. This is allocated on Method Call Stack.

This is not Object Type which is allocated on Heap Memory.

See <a href="https://github.com/yuki-kimoto/SPVM/tree/master/examples/matrix">SPVM Complex Examples</a> at first.

<h4>Complex_2f</h4>

<pre>
# Complex float type
use Complex_2f;

my \$z : Complex_2f;
\$z->{re} = 1.5f;
\$z->{im} = 1.7f;
</pre>

<h4>Complex_2d</h4>

<pre>
# Complex double type
use Complex_2d;

my \$z : Complex_2d;
\$z->{re} = 1.5;
\$z->{im} = 1.7;
</pre>

<h3>New Complex Functions</h3>

New Complex functions

<pre>
use Math (complexf, complex);

# Complex_2f
my \$z = complexf(1.5f, 1.7f);

# Complex_2d
my \$z = complex(1.5, 1.7);
</pre>

<h3>Complex Operation</h3>

<h4>float Complex Addition, Subtract, Multiply, Scalar Multiply, Division</h4>

float Complex Addition, Subtract, Multiply, Scalar Multiply, Division.

<pre>
# float Addition, Subtract, Multiply, Scalar Multiply, Division functions
use Math(caddf, csubf, cmulf, cscamulf, cdivf);

my \$z1 = complexf(1.5f, 1.7f);
my \$z2 = complexf(2.5f, 2.7f);

# Subtract
my \$z_method = csubf(\$z1, \$z2);

# Multiply
my \$z_mul = cmulf(\$z1, \$z2);

# Scalar Multiply
my \$z_scamul = cscamulf(3, \$z2);

# Division
my \$z_div = cdivf(\$z1, \$z2);
</pre>

<h4>double Complex Addition, Subtract, Multiply, Scalar Multiply, Division</h4>

<pre>
# double Addition, Subtract, Multiply, Scalar Multiply, Division functions
use Math(cadd, csub, cmul, cscamul, cdiv);

my \$z1 = complex(1.5, 1.7);
my \$z2 = complex(2.5, 2.7);

# Subtract
my \$z_method = csub(\$z1, \$z2);

# Multiply
my \$z_mul = cmul(\$z1, \$z2);

# Scalar Multiply
my \$z_scamul = cscamul(3, \$z2);

# Division
my \$z_div = cdiv(\$z1, \$z2);
</pre>

<h3>Trigonometric functions</h3>

Trigonometric functions.

<h4>float Trigonometric functions</h4>

float Trigonometric functions.

<pre>
# float Trigonometric functions
use Math(csinf, ccosf, ctanf);

my \$z = complexf(1.5f, 1.7f);

my \$z_sin = csinf(\$z);

# Subtract
my \$z_cos = ccosf(\$z);

# Multiply
my \$z_tan = ctanf(\$z);
</pre>

<h4>double Trigonometric functions</h4>

double Trigonometric functions.

<pre>
# double Trigonometric functions
use Math(csin, ccos, ctan);

my \$z = complex(1.5, 1.7);

my \$z_sin = csin(\$z);

# Subtract
my \$z_cos = ccos(\$z);

# Multiply
my \$z_tan = ctan(\$z);
</pre>

See Math for more complex functions

<h3>Complex Array</h3>

SPVM Array of Complex has values arranged in contiguous memory areas.

<h4>Complex_2f[]</h4>

<pre>
# Complex float type
use Complex_2f;

my \$zs = new Complex_2f[100];

for (my \$i = 0; \$i < @\$zs; \$i++) {
my \$z = \$zs->[\$i];
\$z->{re} = 1.5f;
\$z->{im} = 1.7f;
}
</pre>

<h4>Complex_2d</h4>

<pre>
# Complex double type
use Complex_2d;

my \$zs = new Complex_2d[100];

for (my \$i = 0; \$i < @\$zs; \$i++) {
my \$z = \$zs->[\$i];
\$z->{re} = 1.5;
\$z->{im} = 1.7;
}
</pre>

<h3>Call complex function from Perl</h3>

Call complex function from Perl. Argument is passed and return value is return.

<pre>
use SPVM 'MyComplex';

my \$z1 = {re => 1.7, im => 2.7};
my \$z2 = {re => 7.5, im => 2.5};

my \$z_ret = MyComplex->complex_call_from_perl(\$z1, \$z2);

print "(\$z_ret->{re}, \$z_ret->{im})\n";
</pre>

=end html

``````