package Search::Tools::HeatMap; use Moo; use Carp; use Data::Dump qw( dump ); extends 'Search::Tools::Object'; use namespace::autoclean; our $VERSION = '1.007'; # debugging only my $OPEN = '['; my $CLOSE = ']'; eval { require Term::ANSIColor; }; if ( !$@ ) { $OPEN .= Term::ANSIColor::color('bold red'); $CLOSE = Term::ANSIColor::color('reset') . $CLOSE; } my @attrs = qw( window_size tokens spans as_sentences _treat_phrases_as_singles _qre _query _stemmer ); for my $attr (@attrs) { has $attr => ( is => 'rw' ); } =head1 NAME Search::Tools::HeatMap - locate the best matches in a snippet extract =head1 SYNOPSIS use Search::Tools::Tokenizer; use Search::Tools::HeatMap; my $tokens = $self->tokenizer->tokenize( $my_string, qr/^(interesting)$/ ); my $heatmap = Search::Tools::HeatMap->new( tokens => $tokens, window_size => 20, # default as_sentences => 0, # default ); if ( $heatmap->has_spans ) { my $tokens_arr = $tokens->as_array; # stringify positions my @snips; for my $span ( @{ $heatmap->spans } ) { push( @snips, $span->{str} ); } my $occur_index = $self->occur - 1; if ( $#snips > $occur_index ) { @snips = @snips[ 0 .. $occur_index ]; } printf("%s\n", join( ' ... ', @snips )); } =head1 DESCRIPTION Search::Tools::HeatMap implements a simple algorithm for locating the densest clusters of unique, hot terms in a TokenList. HeatMap is used internally by Snipper but documented here in case someone wants to abuse and/or improve it. =head1 METHODS =head2 new( tokens => I ) Create a new HeatMap. The I object may be either a Search::Tools::TokenList or Search::Tools::TokenListPP object. =head2 BUILD Builds the HeatMap object. Called internally by new(). =cut sub BUILD { my $self = shift; $self->_build; return $self; } =head2 window_size The max width of a span. Defaults to 20 tokens, including the matches. Set this in new(). Access it later if you need to, but the spans will have already been created by new(). =head2 as_sentences Try to match clusters at sentence boundaries. Default is false. Set this in new(). =head2 spans Returns an array ref of matching clusters. Each span in the array is a hash ref with the following keys: =over =item cluster =item pos =item heat =item str =item str_w_pos This item is available only if debug() is true. =item unique =back =cut # TODO this is mostly integer math and might be much # faster if rewritten in XS once the algorithm is "final". sub _build { my $self = shift; my $tokens = $self->tokens or croak "tokens required"; my $window = $self->window_size || 20; my $as_sentences = $self->as_sentences || 0; return $as_sentences ? $self->_as_sentences( $tokens, $window ) : $self->_no_sentences( $tokens, $window ); } # currently _as_sentences() is mostly identical to _no_sentences() # with slightly fewer gymnastics. # Since we already know via sentence_starts where our boundaries are, # we do not have to call $tokens->get_window(). # Who knows how we might improve the sentence algorithm in future, # so already having it in its own method seems like a win. sub _as_sentences { my ( $self, $tokens, $window ) = @_; my $debug = $self->debug || 0; my $sentence_length = $window * 2; # build heatmap with sentence starts my $num_tokens = $tokens->len; my $tokens_arr = $tokens->as_array; my %heatmap = (); my $token_list_heat = $tokens->get_heat; my $heat_sentence_starts = $tokens->get_sentence_starts; # this regex is a sanity check for phrases. we replace the \ with a # more promiscuous check because the single space is too naive # for real text (e.g. st. john's) my $qre = $self->{_qre}; my @phrases = @{ $self->{_query}->phrases }; my $n_terms = $self->{_query}->num_terms; my $query_has_phrase = $qre =~ s/(\\ )+/.+/g; if ($debug) { warn "heat_sentence_starts: " . dump($heat_sentence_starts); warn "token_list_heat: " . dump($token_list_heat); warn "n_terms: $n_terms"; warn "phrases: " . dump( \@phrases ); warn "query_has_phrase: $query_has_phrase"; } # find the "sentence" that each hot token appears in. my @starts_ends; my $i = 0; my %heat_sentence_ends = (); # cache for (@$token_list_heat) { my $token = $tokens->get_token($_); my $token_pos = $token->pos; my $start = $heat_sentence_starts->[ $i++ ]; $heatmap{$token_pos} = $token->is_hot; # a little optimization for when we've got # multiple hot tokens in the same sentence if ( exists $heat_sentence_ends{$start} ) { $debug and warn "found cached end $heat_sentence_ends{$start} " . "for start $start token $token_pos\n"; push( @starts_ends, [ $start, $token_pos, $heat_sentence_ends{$start} ] ); next; } # find the outermost limit of where this sentence might end my $max_end; # is there a "next" start? if ( defined $heat_sentence_starts->[$i] and $heat_sentence_starts->[$i] != $start ) { # this token is unique in this non-final sentence $max_end = $heat_sentence_starts->[$i] - 1; } else { # this is the final sentence $max_end = $num_tokens - 1; } my $end = $start; # find the nearest sentence end to the start while ( $end < $max_end ) { my $tok = $tokens->get_token( $end++ ); if ( !$tok ) { $debug and warn "No token at end=$end"; last; } if ( $tok->is_sentence_end ) { $end--; # move back one position if ($debug) { warn "tok $_ is_sentence_end end=$end"; $tok->dump; } last; } } # back up if we've exceeded the 0-based tokens array. $end = $num_tokens if $end > $num_tokens; $debug and warn "start=$start max_end=$max_end " . "sentence_length=$sentence_length end=$end " . "token_pos=$token_pos\n"; # if we didn't yet set the actual hot token, # include everything up to it. if ( $end < $token_pos ) { $debug and warn "resetting end=$token_pos\n"; $end = $token_pos; } push( @starts_ends, [ $start, $token_pos, $end ] ); # cache $heat_sentence_ends{$start} = $end; } $debug and warn "starts_ends: " . dump( \@starts_ends ); my @spans; my %seen_pos; START_END: for my $start_end (@starts_ends) { # get full window, ignoring positions we've already seen. my $heat = 0; my %span; my @cluster_tokens; my ( $start, $hot_pos, $end ) = @$start_end; POS: for my $pos ( $start .. $end ) { next POS if $seen_pos{$pos}++; $heat += ( exists $heatmap{$pos} ? $heatmap{$pos} : 0 ); push( @cluster_tokens, $tokens->get_token($pos) ); } # if we had already seen_pos all positions. next START_END unless @cluster_tokens; # sanity: make sure we still have something hot my $has_hot = 0; my @cluster_pos; my @strings; TOK: for (@cluster_tokens) { my $pos = $_->pos; $has_hot++ if exists $heatmap{$pos}; push @strings, $_->str; push @cluster_pos, $pos; } next START_END unless $has_hot; # the final string is a sentence end, # but we only want the first char in it, # and not any whitespace, stray punctuation or other # non-word noise. $strings[$#strings] =~ s/^([\.\?\!]).*/$1/; $span{start_end} = $start_end; $span{heat} = $heat; $span{pos} = \@cluster_pos; $span{tokens} = \@cluster_tokens; $span{str} = join( '', @strings ); # spans with more *unique* hot tokens in a single span rank higher # spans with more *proximate* hot tokens in a single span rank higher my %uniq = (); my $i = 0; my $num_proximate = 1; # one for the single hot token for (@cluster_pos) { if ( exists $heatmap{$_} ) { $uniq{ lc $strings[$i] } += $heatmap{$_}; if ( $i && exists $heatmap{ $cluster_pos[ $i - 2 ] } ) { $num_proximate++; } } $i++; } $span{unique} = scalar keys %uniq; $span{proximate} = $num_proximate; # no false phrase matches if !_treat_phrases_as_singles # stemmer check because regex will likely fail # when stemmer is on if ( $query_has_phrase and !$self->{_treat_phrases_as_singles} ) { if ( !$self->{_stemmer} ) { #warn "_treat_phrases_as_singles NOT true"; if ( $span{str} !~ m/$qre/ ) { $debug and warn "treat_phrases_as_singles=FALSE and '$span{str}' failed to match $qre\n"; next START_END; } } else { # if stemmer was on, we cannot rely on the regex, # but we assume that number of uniq terms must match query if ( $n_terms == $query_has_phrase && $n_terms > $span{unique} ) { $debug and warn "treat_phrases_as_singles=FALSE and '$span{str}' " . "expected $n_terms unique terms, got $span{unique}\n"; next START_END; } } } # just for debug if ($debug) { my $i = 0; $span{str_w_pos} = join( '', map { $strings[ $i++ ] . ( exists $heatmap{$_} ? $OPEN : '[' ) . $_ . ( exists $heatmap{$_} ? $CLOSE : ']' ) } @cluster_pos ); } push @spans, \%span; } $self->{spans} = $self->_sort_spans( \@spans ); $self->{heatmap} = \%heatmap; return $self; } sub _sort_spans { return [ # sort by unique, # then by proximity # then by heat # then by pos sort { $b->{unique} <=> $a->{unique} || $b->{proximate} <=> $a->{proximate} || $b->{heat} <=> $a->{heat} || $a->{pos}->[0] <=> $b->{pos}->[0] } @{ $_[1] } ]; } sub _no_sentences { my ( $self, $tokens, $window ) = @_; my $lhs_window = int( $window / 2 ); my $debug = $self->debug || 0; my $num_tokens = $tokens->len; my $tokens_arr = $tokens->as_array; my %heatmap = (); my $token_list_heat = $tokens->get_heat; # this regex is a sanity check for phrases. we replace the \ with a # more promiscuous check because the single space is too naive # for real text (e.g. st. john's) my $qre = $self->{_qre}; my @phrases = @{ $self->{_query}->phrases }; my $n_terms = $self->{_query}->num_terms; my $query_has_phrase = $qre =~ s/(\\ )+/.+/g; if ($debug) { warn "token_list_heat: " . dump($token_list_heat); warn "n_terms: $n_terms"; warn "phrases: " . dump( \@phrases ); warn "query_has_phrase: $query_has_phrase"; } # build heatmap for (@$token_list_heat) { my $token = $tokens->get_token($_); $heatmap{ $token->pos } = $token->is_hot; } # make clusters # $proximity == (1/4 of $window)+1 is somewhat arbitrary, # but since we want to err in having too much context, # we aim high. Worst case scenario is where there are # multiple hot spots in a cluster and each is a full # $proximity length apart, which will grow the # eventual span far beyond $window size. We rely # on max_chars in Snipper to catch that worst case. my $proximity = int( $lhs_window / 2 ) + 1; my @positions = sort { $a <=> $b } keys %heatmap; my @clusters = ( [] ); my $i = 0; for my $pos (@positions) { # if we have advanced past the first position # and the previous position is not "close" to this one, # start a new cluster if ( $i && ( $pos - $positions[ $i - 1 ] ) > $proximity ) { push( @clusters, [$pos] ); } else { push( @{ $clusters[-1] }, $pos ); } $i++; } $debug and warn "proximity: $proximity clusters: " . dump \@clusters; # create spans from each cluster, each with a weight. # we do the initial sort so that clusters that overlap # other clusters via get_window() are weeded out via %seen_pos. my @spans; my %seen_pos; CLUSTER: for my $cluster ( sort { scalar(@$b) <=> scalar(@$a) || $heatmap{ $b->[0] } <=> $heatmap{ $a->[0] } || $a->[0] <=> $b->[0] } @clusters ) { # get full window, ignoring positions we've already seen. my $heat = 0; my %span; my @cluster_tokens; POS: for my $pos (@$cluster) { my ( $start, $end ) = $tokens->get_window( $pos, $window ); POS_TWO: for my $pos2 ( $start .. $end ) { next if $seen_pos{$pos2}++; $heat += ( exists $heatmap{$pos2} ? $heatmap{$pos2} : 0 ); push( @cluster_tokens, $tokens->get_token($pos2) ); } } # we may have skipped a $seen_pos from the $slice above # so make sure we still start/end on a match while ( @cluster_tokens && !$cluster_tokens[0]->is_match ) { shift @cluster_tokens; } while ( @cluster_tokens && !$cluster_tokens[-1]->is_match ) { pop @cluster_tokens; } next CLUSTER unless @cluster_tokens; # sanity: make sure we still have something hot my $has_hot = 0; my @cluster_pos; my @strings; for (@cluster_tokens) { my $pos = $_->pos; $has_hot++ if exists $heatmap{$pos}; push @strings, $_->str; push @cluster_pos, $pos; } next CLUSTER unless $has_hot; $span{cluster} = $cluster; $span{heat} = $heat; $span{pos} = \@cluster_pos; $span{tokens} = \@cluster_tokens; $span{str} = join( '', @strings ); # spans with more *unique* hot tokens in a single span rank higher # spans with more *proximate* hot tokens in a single span rank higher my %uniq = (); my $i = 0; my $num_proximate = 1; # one for the single hot token for (@cluster_pos) { if ( exists $heatmap{$_} ) { $uniq{ lc $strings[$i] } += $heatmap{$_}; if ( $i && exists $heatmap{ $cluster_pos[ $i - 2 ] } ) { $num_proximate++; } } $i++; } $span{unique} = scalar keys %uniq; $span{proximate} = $num_proximate; # no false phrase matches if !_treat_phrases_as_singles # stemmer check because regex will likely fail when stemmer is on if ( $query_has_phrase and !$self->{_treat_phrases_as_singles} ) { if ( !$self->{_stemmer} ) { #warn "_treat_phrases_as_singles NOT true"; if ( $span{str} !~ m/$qre/ ) { $debug and warn "treat_phrases_as_singles=FALSE and '$span{str}' failed to match $qre\n"; next CLUSTER; } } else { # stemmer used, so check unique term count against n_terms if ( $n_terms == $query_has_phrase && $n_terms > $span{unique} ) { $debug and warn "treat_phrases_as_singles=FALSE and '$span{str}' " . "expected $n_terms but got $span{unique}\n"; next CLUSTER; } } } # just for debug if ($debug) { my $i = 0; $span{str_w_pos} = join( '', map { $strings[ $i++ ] . ( exists $heatmap{$_} ? $OPEN : '[' ) . $_ . ( exists $heatmap{$_} ? $CLOSE : ']' ) } @cluster_pos ); } push @spans, \%span; } $self->{spans} = $self->_sort_spans( \@spans ); $self->{heatmap} = \%heatmap; return $self; } =head2 has_spans Returns the number of spans found. =cut sub has_spans { return scalar @{ $_[0]->{spans} }; } 1; __END__ =head1 AUTHOR Peter Karman C<< >> =head1 ACKNOWLEDGEMENTS The idea of the HeatMap comes from KinoSearch, though the implementation here is original. =head1 BUGS Please report any bugs or feature requests to C, or through the web interface at L. I will be notified, and then you'll automatically be notified of progress on your bug as I make changes. =head1 SUPPORT You can find documentation for this module with the perldoc command. perldoc Search::Tools You can also look for information at: =over 4 =item * RT: CPAN's request tracker L =item * AnnoCPAN: Annotated CPAN documentation L =item * CPAN Ratings L =item * Search CPAN L =back =head1 COPYRIGHT Copyright 2009 by Peter Karman. This package is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =head1 SEE ALSO KinoSearch