use strict;
use warnings;
=head1 NAME
Algorithm::Evolutionary::Op::Generation_Skeleton - Even more customizable single generation for an evolutionary algorithm.
=head1 SYNOPSIS
use Algorithm::Evolutionary qw( Individual::BitString
Op::Mutation Op::Crossover
Op::RouletteWheel
Fitness::ONEMAX Op::Generation_Skeleton
Op::Replace_Worst);
use Algorithm::Evolutionary::Utils qw(average);
my $onemax = new Algorithm::Evolutionary::Fitness::ONEMAX;
my @pop;
my $number_of_bits = 20;
my $population_size = 20;
my $replacement_rate = 0.5;
for ( 1..$population_size ) {
my $indi = new Algorithm::Evolutionary::Individual::BitString $number_of_bits ; #Creates random individual
$indi->evaluate( $onemax );
push( @pop, $indi );
}
my $m = new Algorithm::Evolutionary::Op::Mutation 0.5;
my $c = new Algorithm::Evolutionary::Op::Crossover; #Classical 2-point crossover
my $selector = new Algorithm::Evolutionary::Op::RouletteWheel $population_size; #One of the possible selectors
my $generation =
new Algorithm::Evolutionary::Op::Generation_Skeleton( $onemax, $selector, [$m, $c], $replacement_rate );
my @sortPop = sort { $b->Fitness() <=> $a->Fitness() } @pop;
my $bestIndi = $sortPop[0];
my $previous_average = average( \@sortPop );
$generation->apply( \@sortPop );
=head1 Base Class
L<Algorithm::Evolutionary::Op::Base>
=head1 DESCRIPTION
Skeleton class for a general single-generation (or single step) in an
evolutionary algorithm; its instantiation requires a
L<fitness|Algorithm::Evolutionary::Fitness::Base> function, a
L<Selector|Algorithm::Evolutionary::Op::Selector>, a reference to an
array of operators and a replacement operator
=head1 METHODS
=cut
package Algorithm::Evolutionary::Op::Generation_Skeleton;
use lib qw(../../..);
our $VERSION = '3.3';
use Carp;
use base 'Algorithm::Evolutionary::Op::Base';
use Algorithm::Evolutionary qw(Wheel Op::Replace_Worst);
use Sort::Key qw( rnkeysort);
# Class-wide constants
our $APPLIESTO = 'ARRAY';
our $ARITY = 1;
=head2 new( $evaluation_function, $selector, $ref_to_operator_array, $replacement_operator )
Creates an algorithm, with no defaults except for the default
replacement operator (defaults to L<Algorithm::Evolutionary::Op::ReplaceWorst>)
=cut
sub new {
my $class = shift;
my $self = {};
$self->{_eval} = shift || croak "No eval function found";
$self->{_selector} = shift || croak "No selector found";
$self->{_ops} = shift || croak "No operators found";
$self->{_replacementRate} = shift || 1; #Default to all replaced
$self->{_replacement_op} = shift || new Algorithm::Evolutionary::Op::Replace_Worst;
bless $self, $class;
return $self;
}
=head2 set( $ref_to_params_hash, $ref_to_code_hash, $ref_to_operators_hash )
Sets the instance variables. Takes a ref-to-hash as
input. Not intended to be used from outside the class
=cut
sub set {
my $self = shift;
my $hashref = shift || croak "No params here";
my $codehash = shift || croak "No code here";
my $opshash = shift || croak "No ops here";
for ( keys %$codehash ) {
$self->{"_$_"} = eval "sub { $codehash->{$_} } ";
}
$self->{_ops} =();
for ( keys %$opshash ) {
push @{$self->{_ops}},
Algorithm::Evolutionary::Op::Base::fromXML( $_, $opshash->{$_}->[1], $opshash->{$_}->[0] ) ;
}
}
=head2 apply( $population )
Applies the algorithm to the population, which should have
been evaluated first; checks that it receives a
ref-to-array as input, croaks if it does not. Returns a sorted,
culled, evaluated population for next generation.
=cut
sub apply ($) {
my $self = shift;
my $pop = shift || croak "No population here";
croak "Incorrect type ".(ref $pop) if ref( $pop ) ne $APPLIESTO;
#Breed
my $selector = $self->{'_selector'};
my @genitors = $selector->apply( @$pop );
#Reproduce
my $totRate = 0;
my @rates;
my @ops = @{$self->{'_ops'}};
for ( @ops ) {
push( @rates, $_->{'rate'});
}
my $opWheel = new Algorithm::Evolutionary::Wheel @rates;
my @newpop;
my $pringaos = @$pop * $self->{'_replacementRate'} ;
for ( my $i = 0; $i < $pringaos; $i++ ) {
my @offspring;
my $selectedOp = $ops[ $opWheel->spin()];
# print $selectedOp->asXML;
for ( my $j = 0; $j < $selectedOp->arity(); $j ++ ) {
my $chosen = $genitors[ rand( @genitors )];
# print "Elegido ", $chosen->asString(), "\n";
push( @offspring, $chosen->clone() );
}
my $mutante = $selectedOp->apply( @offspring );
push( @newpop, $mutante );
}
my $eval = $self->{'_eval'};
map( $_->evaluate( $eval), @newpop );
#Eliminate and substitute
my $pop_hash = $self->{'_replacement_op'}->apply( $pop, \@newpop );
@$pop = rnkeysort { $_->{'_fitness'} } @$pop_hash ;
}
=head1 SEE ALSO
More or less in the same ballpark, alternatives to this one
=over 4
=item *
L<Algorithm::Evolutionary::Op::GeneralGeneration>
=back
=head1 Copyright
This file is released under the GPL. See the LICENSE file included in this distribution,
or go to http://www.fsf.org/licenses/gpl.txt
=cut
"The truth is out there";