```
abundant.pl
Prints the first N abundant (or deficient, or perfect) numbers. E.g:
perl abundant.pl 100 abundant
perl abundant.pl 100 deficient
perl abundant.pl 15 perfect
sophie_germain.pl
Prints the first N Sophie-Germain primes. E.g.:
perl sophia_germain.pl 100000
twin_primes.pl
Prints the first N twin-primes (first value of the pair). E.g.:
perl twin_primes.pl 100000
find_mr_bases.pl
An example using threads to do a parallel search for good deterministic
bases for a Miller-Rabin test. This is definitely not the fastest way
to find these, but it's a decent example of quickly trying out an idea.
Be sure to set $nthreads to the right value for your machine. It should
fully load your CPUs.
parallel_fibprime.pl
Find Fibonacci primes, in parallel. You will want Math::Prime::Util::GMP
installed, as these are many-thousand-digit numbers.
porter.pl
Various ways of constructing a sequence suggested by Michael B. Porter:
a(n) = m s.t. sigma(m) + sigma(m+1) + ... + sigma(m+n-1) is prime.
Includes comparison to Pari/GP.
inverse_totient.pl
Computes the image of phi(n) for a given m. That is, given a number m,
the function computes all n where euler_phi(n) = m. It returns just the
count in scalar context (which can be faster and lower memory for inputs
such as factorials that have huge images).
project_euler_*.pl
Example solutions for some Project Euler problems. If you participate
in PE, you really should solve the problems yourself first. These
provide good examples how how to use some of the module functionality.
verify-cert.pl
Takes an MPU or Primo primality certificate and verifies it. This is
obsolete, as Math::Prime::Util::GMP now includes C code for this.
verify-gmp-ecpp-cert.pl
Parses the verbose output of GMP-ECPP to construct a certificate, then
runs it through the verification process.
verify-sage-ecpp-cert.pl
Verifies the output of SAGE's ECPP. The SAGE module looks like it died
in development and never got into SAGE. NZMath's ECPP doesn't seem to
output a certificate, which makes it much less useful.
```