# NAME

Math::NumSeq::PisanoPeriodSteps -- Fibonacci frequency and Leonardo logarithm

# SYNOPSIS

`````` use Math::NumSeq::PisanoPeriodSteps;
my \$seq = Math::NumSeq::PisanoPeriodSteps->new;
my (\$i, \$value) = \$seq->next;``````

# DESCRIPTION

This is the number of times the `PisanoPeriod` must be applied before reaching an unchanging value.

``````    0, 4, 3, 2, 3, 1, 2, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, ...
starting i=1``````

As per Fulton and Morris

repeatedly applying the PisanoPeriod eventually reaches an m which is unchanging, ie. for which PisanoPeriod(m)==m. For example i=5 goes

``````    PisanoPeriod(5)=20
PisanoPeriod(20)=60
PisanoPeriod(60)=60
PisanoPeriod(120)=120
so value=3 applications until to reach unchanging 120``````

## Leonardo Logarithm

The unchanging period reached is always of the form

``    m = 24 * 5^(l-1)``

The "l" exponent is the Leonardo logarithm. Option `values_type => "log"` returns that as the sequence values.

``````    0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, ...
starting i=1``````

For example the i=5 above ends at m=120=24*5^1 so l-1=1 is l=2 for the sequence value.

# FUNCTIONS

See "FUNCTIONS" in Math::NumSeq for behaviour common to all sequence classes.

`\$seq = Math::NumSeq::PisanoPeriodSteps->new ()`
`\$seq = Math::NumSeq::PisanoPeriodSteps->new (values_type => \$str)`

Create and return a new sequence object.

## Random Access

`\$value = \$seq->ith(\$i)`

Return the count or logarithm of `\$i`.