# This file was automatically generated by SWIG (http://www.swig.org).
# Version 4.0.1
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.

package Math::GSL::CDF;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::CDFc;
bootstrap Math::GSL::CDF;
package Math::GSL::CDF;
@EXPORT = qw();

# ---------- BASE METHODS -------------

package Math::GSL::CDF;

sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}

sub CLEAR { }

sub FIRSTKEY { }

sub NEXTKEY { }

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}

sub this {
    my $ptr = shift;
    return tied(%$ptr);
}


# ------- FUNCTION WRAPPERS --------

package Math::GSL::CDF;

*gsl_error = *Math::GSL::CDFc::gsl_error;
*gsl_stream_printf = *Math::GSL::CDFc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::CDFc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::CDFc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::CDFc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::CDFc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::CDFc::gsl_set_stream;
*gsl_cdf_ugaussian_P = *Math::GSL::CDFc::gsl_cdf_ugaussian_P;
*gsl_cdf_ugaussian_Q = *Math::GSL::CDFc::gsl_cdf_ugaussian_Q;
*gsl_cdf_ugaussian_Pinv = *Math::GSL::CDFc::gsl_cdf_ugaussian_Pinv;
*gsl_cdf_ugaussian_Qinv = *Math::GSL::CDFc::gsl_cdf_ugaussian_Qinv;
*gsl_cdf_gaussian_P = *Math::GSL::CDFc::gsl_cdf_gaussian_P;
*gsl_cdf_gaussian_Q = *Math::GSL::CDFc::gsl_cdf_gaussian_Q;
*gsl_cdf_gaussian_Pinv = *Math::GSL::CDFc::gsl_cdf_gaussian_Pinv;
*gsl_cdf_gaussian_Qinv = *Math::GSL::CDFc::gsl_cdf_gaussian_Qinv;
*gsl_cdf_gamma_P = *Math::GSL::CDFc::gsl_cdf_gamma_P;
*gsl_cdf_gamma_Q = *Math::GSL::CDFc::gsl_cdf_gamma_Q;
*gsl_cdf_gamma_Pinv = *Math::GSL::CDFc::gsl_cdf_gamma_Pinv;
*gsl_cdf_gamma_Qinv = *Math::GSL::CDFc::gsl_cdf_gamma_Qinv;
*gsl_cdf_cauchy_P = *Math::GSL::CDFc::gsl_cdf_cauchy_P;
*gsl_cdf_cauchy_Q = *Math::GSL::CDFc::gsl_cdf_cauchy_Q;
*gsl_cdf_cauchy_Pinv = *Math::GSL::CDFc::gsl_cdf_cauchy_Pinv;
*gsl_cdf_cauchy_Qinv = *Math::GSL::CDFc::gsl_cdf_cauchy_Qinv;
*gsl_cdf_laplace_P = *Math::GSL::CDFc::gsl_cdf_laplace_P;
*gsl_cdf_laplace_Q = *Math::GSL::CDFc::gsl_cdf_laplace_Q;
*gsl_cdf_laplace_Pinv = *Math::GSL::CDFc::gsl_cdf_laplace_Pinv;
*gsl_cdf_laplace_Qinv = *Math::GSL::CDFc::gsl_cdf_laplace_Qinv;
*gsl_cdf_rayleigh_P = *Math::GSL::CDFc::gsl_cdf_rayleigh_P;
*gsl_cdf_rayleigh_Q = *Math::GSL::CDFc::gsl_cdf_rayleigh_Q;
*gsl_cdf_rayleigh_Pinv = *Math::GSL::CDFc::gsl_cdf_rayleigh_Pinv;
*gsl_cdf_rayleigh_Qinv = *Math::GSL::CDFc::gsl_cdf_rayleigh_Qinv;
*gsl_cdf_chisq_P = *Math::GSL::CDFc::gsl_cdf_chisq_P;
*gsl_cdf_chisq_Q = *Math::GSL::CDFc::gsl_cdf_chisq_Q;
*gsl_cdf_chisq_Pinv = *Math::GSL::CDFc::gsl_cdf_chisq_Pinv;
*gsl_cdf_chisq_Qinv = *Math::GSL::CDFc::gsl_cdf_chisq_Qinv;
*gsl_cdf_exponential_P = *Math::GSL::CDFc::gsl_cdf_exponential_P;
*gsl_cdf_exponential_Q = *Math::GSL::CDFc::gsl_cdf_exponential_Q;
*gsl_cdf_exponential_Pinv = *Math::GSL::CDFc::gsl_cdf_exponential_Pinv;
*gsl_cdf_exponential_Qinv = *Math::GSL::CDFc::gsl_cdf_exponential_Qinv;
*gsl_cdf_exppow_P = *Math::GSL::CDFc::gsl_cdf_exppow_P;
*gsl_cdf_exppow_Q = *Math::GSL::CDFc::gsl_cdf_exppow_Q;
*gsl_cdf_tdist_P = *Math::GSL::CDFc::gsl_cdf_tdist_P;
*gsl_cdf_tdist_Q = *Math::GSL::CDFc::gsl_cdf_tdist_Q;
*gsl_cdf_tdist_Pinv = *Math::GSL::CDFc::gsl_cdf_tdist_Pinv;
*gsl_cdf_tdist_Qinv = *Math::GSL::CDFc::gsl_cdf_tdist_Qinv;
*gsl_cdf_fdist_P = *Math::GSL::CDFc::gsl_cdf_fdist_P;
*gsl_cdf_fdist_Q = *Math::GSL::CDFc::gsl_cdf_fdist_Q;
*gsl_cdf_fdist_Pinv = *Math::GSL::CDFc::gsl_cdf_fdist_Pinv;
*gsl_cdf_fdist_Qinv = *Math::GSL::CDFc::gsl_cdf_fdist_Qinv;
*gsl_cdf_beta_P = *Math::GSL::CDFc::gsl_cdf_beta_P;
*gsl_cdf_beta_Q = *Math::GSL::CDFc::gsl_cdf_beta_Q;
*gsl_cdf_beta_Pinv = *Math::GSL::CDFc::gsl_cdf_beta_Pinv;
*gsl_cdf_beta_Qinv = *Math::GSL::CDFc::gsl_cdf_beta_Qinv;
*gsl_cdf_flat_P = *Math::GSL::CDFc::gsl_cdf_flat_P;
*gsl_cdf_flat_Q = *Math::GSL::CDFc::gsl_cdf_flat_Q;
*gsl_cdf_flat_Pinv = *Math::GSL::CDFc::gsl_cdf_flat_Pinv;
*gsl_cdf_flat_Qinv = *Math::GSL::CDFc::gsl_cdf_flat_Qinv;
*gsl_cdf_lognormal_P = *Math::GSL::CDFc::gsl_cdf_lognormal_P;
*gsl_cdf_lognormal_Q = *Math::GSL::CDFc::gsl_cdf_lognormal_Q;
*gsl_cdf_lognormal_Pinv = *Math::GSL::CDFc::gsl_cdf_lognormal_Pinv;
*gsl_cdf_lognormal_Qinv = *Math::GSL::CDFc::gsl_cdf_lognormal_Qinv;
*gsl_cdf_gumbel1_P = *Math::GSL::CDFc::gsl_cdf_gumbel1_P;
*gsl_cdf_gumbel1_Q = *Math::GSL::CDFc::gsl_cdf_gumbel1_Q;
*gsl_cdf_gumbel1_Pinv = *Math::GSL::CDFc::gsl_cdf_gumbel1_Pinv;
*gsl_cdf_gumbel1_Qinv = *Math::GSL::CDFc::gsl_cdf_gumbel1_Qinv;
*gsl_cdf_gumbel2_P = *Math::GSL::CDFc::gsl_cdf_gumbel2_P;
*gsl_cdf_gumbel2_Q = *Math::GSL::CDFc::gsl_cdf_gumbel2_Q;
*gsl_cdf_gumbel2_Pinv = *Math::GSL::CDFc::gsl_cdf_gumbel2_Pinv;
*gsl_cdf_gumbel2_Qinv = *Math::GSL::CDFc::gsl_cdf_gumbel2_Qinv;
*gsl_cdf_weibull_P = *Math::GSL::CDFc::gsl_cdf_weibull_P;
*gsl_cdf_weibull_Q = *Math::GSL::CDFc::gsl_cdf_weibull_Q;
*gsl_cdf_weibull_Pinv = *Math::GSL::CDFc::gsl_cdf_weibull_Pinv;
*gsl_cdf_weibull_Qinv = *Math::GSL::CDFc::gsl_cdf_weibull_Qinv;
*gsl_cdf_pareto_P = *Math::GSL::CDFc::gsl_cdf_pareto_P;
*gsl_cdf_pareto_Q = *Math::GSL::CDFc::gsl_cdf_pareto_Q;
*gsl_cdf_pareto_Pinv = *Math::GSL::CDFc::gsl_cdf_pareto_Pinv;
*gsl_cdf_pareto_Qinv = *Math::GSL::CDFc::gsl_cdf_pareto_Qinv;
*gsl_cdf_logistic_P = *Math::GSL::CDFc::gsl_cdf_logistic_P;
*gsl_cdf_logistic_Q = *Math::GSL::CDFc::gsl_cdf_logistic_Q;
*gsl_cdf_logistic_Pinv = *Math::GSL::CDFc::gsl_cdf_logistic_Pinv;
*gsl_cdf_logistic_Qinv = *Math::GSL::CDFc::gsl_cdf_logistic_Qinv;
*gsl_cdf_binomial_P = *Math::GSL::CDFc::gsl_cdf_binomial_P;
*gsl_cdf_binomial_Q = *Math::GSL::CDFc::gsl_cdf_binomial_Q;
*gsl_cdf_poisson_P = *Math::GSL::CDFc::gsl_cdf_poisson_P;
*gsl_cdf_poisson_Q = *Math::GSL::CDFc::gsl_cdf_poisson_Q;
*gsl_cdf_geometric_P = *Math::GSL::CDFc::gsl_cdf_geometric_P;
*gsl_cdf_geometric_Q = *Math::GSL::CDFc::gsl_cdf_geometric_Q;
*gsl_cdf_negative_binomial_P = *Math::GSL::CDFc::gsl_cdf_negative_binomial_P;
*gsl_cdf_negative_binomial_Q = *Math::GSL::CDFc::gsl_cdf_negative_binomial_Q;
*gsl_cdf_pascal_P = *Math::GSL::CDFc::gsl_cdf_pascal_P;
*gsl_cdf_pascal_Q = *Math::GSL::CDFc::gsl_cdf_pascal_Q;
*gsl_cdf_hypergeometric_P = *Math::GSL::CDFc::gsl_cdf_hypergeometric_P;
*gsl_cdf_hypergeometric_Q = *Math::GSL::CDFc::gsl_cdf_hypergeometric_Q;

# ------- VARIABLE STUBS --------

package Math::GSL::CDF;

*GSL_VERSION = *Math::GSL::CDFc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::CDFc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::CDFc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::CDFc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::CDFc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::CDFc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::CDFc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::CDFc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::CDFc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::CDFc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::CDFc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::CDFc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::CDFc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::CDFc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::CDFc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::CDFc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::CDFc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::CDFc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::CDFc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::CDFc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::CDFc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::CDFc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::CDFc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::CDFc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::CDFc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::CDFc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::CDFc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::CDFc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::CDFc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::CDFc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::CDFc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::CDFc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::CDFc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::CDFc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::CDFc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::CDFc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::CDFc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::CDFc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::CDFc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::CDFc::GSL_EOF;


our @EXPORT_OK = qw/ gsl_cdf_ugaussian_P gsl_cdf_ugaussian_Q gsl_cdf_ugaussian_Pinv
gsl_cdf_ugaussian_Qinv gsl_cdf_gaussian_P gsl_cdf_gaussian_Q
gsl_cdf_gaussian_Pinv gsl_cdf_gaussian_Qinv gsl_cdf_gamma_P
gsl_cdf_gamma_Q gsl_cdf_gamma_Pinv gsl_cdf_gamma_Qinv
gsl_cdf_cauchy_P gsl_cdf_cauchy_Q gsl_cdf_cauchy_Pinv
gsl_cdf_cauchy_Qinv gsl_cdf_laplace_P gsl_cdf_laplace_Q
gsl_cdf_laplace_Pinv gsl_cdf_laplace_Qinv gsl_cdf_rayleigh_P
gsl_cdf_rayleigh_Q gsl_cdf_rayleigh_Pinv gsl_cdf_rayleigh_Qinv
gsl_cdf_chisq_P gsl_cdf_chisq_Q gsl_cdf_chisq_Pinv
gsl_cdf_chisq_Qinv gsl_cdf_exponential_P gsl_cdf_exponential_Q
gsl_cdf_exponential_Pinv gsl_cdf_exponential_Qinv gsl_cdf_exppow_P
gsl_cdf_exppow_Q gsl_cdf_tdist_P gsl_cdf_tdist_Q
gsl_cdf_tdist_Pinv gsl_cdf_tdist_Qinv gsl_cdf_fdist_P
gsl_cdf_fdist_Q gsl_cdf_fdist_Pinv gsl_cdf_fdist_Qinv
gsl_cdf_beta_P gsl_cdf_beta_Q gsl_cdf_beta_Pinv
gsl_cdf_beta_Qinv gsl_cdf_flat_P gsl_cdf_flat_Q
gsl_cdf_flat_Pinv gsl_cdf_flat_Qinv gsl_cdf_lognormal_P
gsl_cdf_lognormal_Q gsl_cdf_lognormal_Pinv gsl_cdf_lognormal_Qinv
gsl_cdf_gumbel1_P gsl_cdf_gumbel1_Q gsl_cdf_gumbel1_Pinv
gsl_cdf_gumbel1_Qinv gsl_cdf_gumbel2_P gsl_cdf_gumbel2_Q
gsl_cdf_gumbel2_Pinv gsl_cdf_gumbel2_Qinv gsl_cdf_weibull_P
gsl_cdf_weibull_Q gsl_cdf_weibull_Pinv gsl_cdf_weibull_Qinv
gsl_cdf_pareto_P gsl_cdf_pareto_Q gsl_cdf_pareto_Pinv
gsl_cdf_pareto_Qinv gsl_cdf_logistic_P gsl_cdf_logistic_Q
gsl_cdf_logistic_Pinv gsl_cdf_logistic_Qinv gsl_cdf_binomial_P
gsl_cdf_binomial_Q gsl_cdf_poisson_P gsl_cdf_poisson_Q
gsl_cdf_geometric_P gsl_cdf_geometric_Q gsl_cdf_negative_binomial_P
gsl_cdf_negative_binomial_Q gsl_cdf_pascal_P gsl_cdf_pascal_Q
gsl_cdf_hypergeometric_P gsl_cdf_hypergeometric_Q
                /;
our %EXPORT_TAGS = ( all =>  [  @EXPORT_OK ], geometric => [ gsl_cdf_geometric_P , gsl_cdf_geometric_Q ], tdist => [ gsl_cdf_tdist_P , gsl_cdf_tdist_Q , gsl_cdf_tdist_Pinv , gsl_cdf_tdist_Qinv ], ugaussian => [ gsl_cdf_ugaussian_P , gsl_cdf_ugaussian_Q , gsl_cdf_ugaussian_Pinv , gsl_cdf_ugaussian_Qinv ], rayleigh => [ gsl_cdf_rayleigh_P , gsl_cdf_rayleigh_Q , gsl_cdf_rayleigh_Pinv , gsl_cdf_rayleigh_Qinv ], pascal => [ gsl_cdf_pascal_P , gsl_cdf_pascal_Q ], exponential => [ gsl_cdf_exponential_P , gsl_cdf_exponential_Q , gsl_cdf_exponential_Pinv , gsl_cdf_exponential_Qinv ], gumbel2 => [ gsl_cdf_gumbel2_P , gsl_cdf_gumbel2_Q , gsl_cdf_gumbel2_Pinv , gsl_cdf_gumbel2_Qinv ], gumbel1 => [ gsl_cdf_gumbel1_P , gsl_cdf_gumbel1_Q , gsl_cdf_gumbel1_Pinv , gsl_cdf_gumbel1_Qinv ], exppow => [ gsl_cdf_exppow_P , gsl_cdf_exppow_Q ], logistic => [ gsl_cdf_logistic_P , gsl_cdf_logistic_Q , gsl_cdf_logistic_Pinv , gsl_cdf_logistic_Qinv ], weibull => [ gsl_cdf_weibull_P , gsl_cdf_weibull_Q , gsl_cdf_weibull_Pinv , gsl_cdf_weibull_Qinv ], gaussian => [ gsl_cdf_gaussian_P , gsl_cdf_gaussian_Q , gsl_cdf_gaussian_Pinv , gsl_cdf_gaussian_Qinv ], poisson => [ gsl_cdf_poisson_P , gsl_cdf_poisson_Q ], beta => [ gsl_cdf_beta_P , gsl_cdf_beta_Q , gsl_cdf_beta_Pinv , gsl_cdf_beta_Qinv ], binomial => [ gsl_cdf_binomial_P , gsl_cdf_binomial_Q ], laplace => [ gsl_cdf_laplace_P , gsl_cdf_laplace_Q , gsl_cdf_laplace_Pinv , gsl_cdf_laplace_Qinv ], lognormal => [ gsl_cdf_lognormal_P , gsl_cdf_lognormal_Q , gsl_cdf_lognormal_Pinv , gsl_cdf_lognormal_Qinv ], cauchy => [ gsl_cdf_cauchy_P , gsl_cdf_cauchy_Q , gsl_cdf_cauchy_Pinv , gsl_cdf_cauchy_Qinv ], fdist => [ gsl_cdf_fdist_P , gsl_cdf_fdist_Q , gsl_cdf_fdist_Pinv , gsl_cdf_fdist_Qinv ], chisq => [ gsl_cdf_chisq_P , gsl_cdf_chisq_Q , gsl_cdf_chisq_Pinv , gsl_cdf_chisq_Qinv ], gamma => [ gsl_cdf_gamma_P , gsl_cdf_gamma_Q , gsl_cdf_gamma_Pinv , gsl_cdf_gamma_Qinv ], hypergeometric => [ gsl_cdf_hypergeometric_P , gsl_cdf_hypergeometric_Q ], negative => [ gsl_cdf_negative_binomial_P , gsl_cdf_negative_binomial_Q ], pareto => [ gsl_cdf_pareto_P , gsl_cdf_pareto_Q , gsl_cdf_pareto_Pinv , gsl_cdf_pareto_Qinv ], flat => [ gsl_cdf_flat_P , gsl_cdf_flat_Q , gsl_cdf_flat_Pinv , gsl_cdf_flat_Qinv ]);

__END__

=encoding utf8

=head1 NAME

Math::GSL::CDF - Cumulative Distribution Functions

=head1 SYNOPSIS

    use Math::GSL::CDF qw/:all/;
    my $x = gsl_cdf_gaussian_Pinv($P, $sigma);

    use Math::GSL::CDF qw/:beta/;
    print gsl_cdf_beta_P(1,2,3) . "\n";

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the named distributions.

=head1 DESCRIPTION

Here is a list of all the functions included in this module :

=over 4

=item gsl_cdf_ugaussian_P($x)

=item gsl_cdf_ugaussian_Q($x)

=item gsl_cdf_ugaussian_Pinv($P)

=item gsl_cdf_ugaussian_Qinv($Q)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the unit Gaussian distribution.

=item gsl_cdf_gaussian_P($x, $sigma)

=item gsl_cdf_gaussian_Q($x, $sigma)

=item gsl_cdf_gaussian_Pinv($P, $sigma)

=item gsl_cdf_gaussian_Qinv($Q, $sigma)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Gaussian distribution with standard deviation $sigma.

=item gsl_cdf_gamma_P($x, $a, $b)

=item gsl_cdf_gamma_Q($x, $a, $b)

=item gsl_cdf_gamma_Pinv($P, $a, $b)

=item gsl_cdf_gamma_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the gamma distribution with parameters $a and $b.

=item gsl_cdf_cauchy_P($x, $a)

=item gsl_cdf_cauchy_Q($x, $a)

=item gsl_cdf_cauchy_Pinv($P, $a)

=item gsl_cdf_cauchy_Qinv($Q, $a)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Cauchy distribution with scale parameter $a.

=item gsl_cdf_laplace_P($x, $a)

=item gsl_cdf_laplace_Q($x, $a)

=item gsl_cdf_laplace_Pinv($P, $a)

=item gsl_cdf_laplace_Qinv($Q, $a)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Laplace distribution with width $a.

=item gsl_cdf_rayleigh_P($x, $sigma)

=item gsl_cdf_rayleigh_Q($x, $sigma)

=item gsl_cdf_rayleigh_Pinv($P, $sigma)

=item gsl_cdf_rayleigh_Qinv($Q, $sigma)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Rayleigh distribution with scale parameter $sigma.

=item gsl_cdf_chisq_P($x, $nu)

=item gsl_cdf_chisq_Q($x, $nu)

=item gsl_cdf_chisq_Pinv($P, $nu)

=item gsl_cdf_chisq_Qinv($Q, $nu)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the chi-squared distribution with $nu degrees of freedom.

=item gsl_cdf_exponential_P($x, $mu)

=item gsl_cdf_exponential_Q($x, $mu)

=item gsl_cdf_exponential_Pinv($P, $mu)

=item gsl_cdf_exponential_Qinv($Q, $mu)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Laplace distribution with width $a.

=item gsl_cdf_exppow_P($x, $a, $b)

=item gsl_cdf_exppow_Q($x, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) for
the exponential power distribution with parameters $a and $b.

=item gsl_cdf_tdist_P($x, $nu)

=item gsl_cdf_tdist_Q($x, $nu)

=item gsl_cdf_tdist_Pinv($P, $nu)

=item gsl_cdf_tdist_Qinv($Q, $nu)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the t-distribution with $nu degrees of freedom.

=item gsl_cdf_fdist_P($x, $nu1, $nu2)

=item gsl_cdf_fdist_Q($x, $nu1, $nu2)

=item gsl_cdf_fdist_Pinv($P, $nu1, $nu2)

=item gsl_cdf_fdist_Qinv($Q, $nu1, $nu2)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the F-distribution with $nu1 and $nu2 degrees of freedom.

=item gsl_cdf_beta_P($x, $a, $b)

=item gsl_cdf_beta_Q($x, $a, $b)

=item gsl_cdf_beta_Pinv($P, $a, $b)

=item gsl_cdf_beta_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the beta distribution with parameters $a and $b.

=item gsl_cdf_flat_P($x, $a, $b)

=item gsl_cdf_flat_Q($x, $a, $b)

=item gsl_cdf_flat_Pinv($P, $a, $b)

=item gsl_cdf_flat_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for a uniform distribution from $a to $b.

=item gsl_cdf_lognormal_P($x, $zeta, $sigma)

=item gsl_cdf_lognormal_Q($x, $zeta, $sigma)

=item gsl_cdf_lognormal_Pinv($P, $zeta, $sigma)

=item gsl_cdf_lognormal_Qinv($Q, $zeta, $sigma)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the lognormal distribution with parameters $zeta and $sigma.

=item gsl_cdf_gumbel1_P($x, $a, $b)

=item gsl_cdf_gumbel1_Q($x, $a, $b)

=item gsl_cdf_gumbel1_Pinv($P, $a, $b)

=item gsl_cdf_gumbel1_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Type-1 Gumbel distribution with parameters $a and $b.

=item gsl_cdf_gumbel2_P($x, $a, $b)

=item gsl_cdf_gumbel2_Q($x, $a, $b)

=item gsl_cdf_gumbel2_Pinv($P, $a, $b)

=item gsl_cdf_gumbel2_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Type-2 Gumbel distribution with parameters $a and $b.

=item gsl_cdf_weibull_P($x, $a, $b)

=item gsl_cdf_weibull_Q($x, $a, $b)

=item gsl_cdf_weibull_Pinv($P, $a, $b)

=item gsl_cdf_weibull_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Type-1 Gumbel distribution with parameters $a and $b.

=item gsl_cdf_pareto_P($x, $a, $b)

=item gsl_cdf_pareto_Q($x, $a, $b)

=item gsl_cdf_pareto_Pinv($P, $a, $b)

=item gsl_cdf_pareto_Qinv($Q, $a, $b)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the Pareto distribution with exponent $a and scale $b.

=item gsl_cdf_logistic_P($x, $a)

=item gsl_cdf_logistic_Q($x, $a)

=item gsl_cdf_logistic_Pinv($P, $a)

=item gsl_cdf_logistic_Qinv($Q, $a)

These functions compute the cumulative distribution functions P(x), Q(x) and
their inverses for the logistic distribution with scale parameter a.

=item gsl_cdf_binomial_P($k, $p, $n)

=item gsl_cdf_binomial_Q($k, $p, $n)

These functions compute the cumulative distribution functions P(k), Q(k) for
the binomial distribution with parameters $p and $n.

=item gsl_cdf_poisson_P($k, $mu)

=item gsl_cdf_poisson_Q($k, $mu)

These functions compute the cumulative distribution functions P(k), Q(k) for
the Poisson distribution with parameter $mu.

=item gsl_cdf_geometric_P($k, $p)

=item gsl_cdf_geometric_Q($k, $p)

These functions compute the cumulative distribution functions P(k), Q(k) for
the geometric distribution with parameter $p.

=item gsl_cdf_negative_binomial_P($k, $p, $n)

=item gsl_cdf_negative_binomial_Q($k, $p, $n)

These functions compute the cumulative distribution functions P(k), Q(k) for
the negative binomial distribution with parameters $p and $n.

=item gsl_cdf_pascal_P($k, $p, $n)

=item gsl_cdf_pascal_Q($k, $p, $n)

These functions compute the cumulative distribution functions P(k), Q(k) for
the Pascal distribution with parameters $p and $n.

=item gsl_cdf_hypergeometric_P($k, $n1, $n2, $t)

=item gsl_cdf_hypergeometric_Q($k, $n1, $n2, $t)

These functions compute the cumulative distribution functions P(k), Q(k) for
the hypergeometric distribution with parameters $n1, $n2 and $t.

=back

To import specific functions, list them in the use line. To import
all function exportable by Math::GSL::CDF do

    use Math::GSL::CDF qw/:all/

This is the list of available import tags:

=over

=item geometric

=item tdist

=item ugaussian

=item rayleigh

=item pascal

=item exponential

=item gumbel2

=item gumbel1

=item exppow

=item logistic

=item weibull

=item gaussian

=item poisson

=item beta

=item binomial

=item laplace

=item lognormal

=item cauchy

=item fdist

=item chisq

=item gamma

=item hypergeometric

=item negative

=item pareto

=item flat

=back

For example the beta tag contains theses functions : gsl_cdf_beta_P,
gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv .

For more informations on the functions, we refer you to the GSL offcial documentation:
L<http://www.gnu.org/software/gsl/manual/html_node/>


=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2020 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut
1;