# NAME

Math::BigInt::Constant - arbitrary sized constant integers

# SYNOPSIS

``````  use Math::BigInt::Constant;

my \$class = 'Math::BigInt::Constant';

# Constant creation
\$x     = \$class->new(\$str);   # defaults to 0
\$nan   = \$class->bnan();      # create a NotANumber
\$zero  = \$class->bzero();     # create a "0"
\$one   = \$class->bone();      # create a "1"
\$m_one = \$class->bone('-');   # create a "-1"

# Testing
\$x->is_zero();                # return wether arg is zero or not
\$x->is_nan();                 # return wether arg is NaN or not
\$x->is_one();                 # return true if arg is +1
\$x->is_one('-');              # return true if arg is -1
\$x->is_odd();                 # return true if odd, false for even
\$x->is_even();                # return true if even, false for odd
\$x->is_inf(\$sign);            # return true if argument is +inf or -inf, give
# argument ('+' or '-') to match only same sign
\$x->is_pos();                 # return true if arg > 0
\$x->is_neg();                 # return true if arg < 0

\$x->bcmp(\$y);                 # compare numbers (undef,<0,=0,>0)
\$x->bacmp(\$y);                # compare absolutely (undef,<0,=0,>0)
\$x->sign();                   # return the sign, one of +,-,+inf,-inf or NaN

# The following would modify and thus are illegal, e.g. result in a die():

# set
\$x->bzero();                  # set \$x to 0
\$x->bnan();                   # set \$x to NaN

\$x->bneg();                   # negation
\$x->babs();                   # absolute value
\$x->bnorm();                  # normalize (no-op)
\$x->bnot();                   # two's complement (bit wise not)
\$x->binc();                   # increment x by 1
\$x->bdec();                   # decrement x by 1

\$x->bsub(\$y);                 # subtraction (subtract \$y from \$x)
\$x->bmul(\$y);                 # multiplication (multiply \$x by \$y)
\$x->bdiv(\$y);                 # divide, set \$x to quotient
# return (quo,rem) or quo if scalar

\$x->bmod(\$y);                 # modulus (x % y)
\$x->bpow(\$y);                 # power of arguments (x ** y)
\$x->blsft(\$y);                # left shift
\$x->brsft(\$y);                # right shift

\$x->band(\$y);                 # bit-wise and
\$x->bior(\$y);                 # bit-wise inclusive or
\$x->bxor(\$y);                 # bit-wise exclusive or
\$x->bnot();                   # bit-wise not (two's complement)

\$x->bnok(\$k);                 # n over k
\$x->bfac();                   # factorial \$x!
\$x->bexp();                   # Euler's number e ** \$x

\$x->bsqrt();                  # calculate square-root
\$x->broot(\$y);                # calculate \$y's root
\$x->blog(\$base);              # calculate integer logarithm

\$x->round(\$A,\$P,\$round_mode); # round to accuracy or precision using mode \$r
\$x->bround(\$N);               # accuracy: preserve \$N digits
\$x->bfround(\$N);              # round to \$Nth digit, no-op for BigInts

# The following do not modify their arguments in BigInt, so they are allowed:
\$x->bfloor();                 # return integer less or equal than \$x
\$x->bceil();                  # return integer greater or equal than \$x

bgcd(@values);                # greatest common divisor
blcm(@values);                # lowest common multiplicator

\$x->bstr();                   # return normalized string
\$x->bsstr();                  # return string in scientific notation
\$x->length();                 # return number of digits in number
\$x->digit(\$n);                # extract N'th digit from number

\$x->as_int();                 # return a copy of the object as BigInt
\$x->as_hex();                 # return number as hex string
\$x->as_bin();                 # return number as binary string
\$x->as_oct();                 # return number as octal string``````

# DESCRIPTION

With this module you can define constant BigInts on a per-object basis. The usual `use Math::BigInt ':constant'` will catch all integer constants in the script at compile time, but will not let you create constant values on the fly, nor work for strings and/or floating point constants like `1e5`.

`Math::BigInt::Constant` is a true subclass of Math::BigInt and can do all the same things - except modifying any of the objects.

# EXAMPLES

Opposed to compile-time checking via `use constant`:

``````    use Math::BigInt;
use constant X => Math::BigInt->new("12345678");

print X," ",X+2,"\n";       # okay
print "X\n";                # oups
X += 2;                     # not okay, will die``````

these provide runtime checks and can be interpolated into strings:

``````    use Math::BigInt::Constant;
\$x = Math::BigInt::Constant->new("3141592");

print "\$x\n";               # okay
print \$x+2,"\n";            # dito
\$x += 2;                    # not okay, will die``````

# METHODS

A `Math::BigInt::Constant` object has all the same methods as a `Math::BigInt` object.

# BUGS

None discovered yet.